
1

Eric Guilyardi
IPSL/LOCEAN, Paris & Walker Institute, Univ. Reading

Understanding El Niño in coupled GCMs:
new perspectives

Outline:
• Representation of El Niño in coupled GCMs 
• Attributing shortcomings to model errors

• link with background state
• physical mechanisms

• Strategies forward

3rd WGNE Workshop on Systematic Errors in Climate and NWP Models
San Francisco, February 12-16, 2007
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 El Niño in coupled GCMs

Which metric ?
• Amplitude
• Frequency
• Seasonal phase lock
• ENSO modes and types
• others (posters and talks)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

Analysis on control climate of IPCC AR4 models (CMIP3)
(some older MIPs and scenario discussion)
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 El Niño in coupled GCMs – mean state

Trade winds too strong
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 El Niño in coupled GCMs - amplitude

Classic metric:
SST standard deviation

IPCC TAR (    ) too weak

AchutaRao & Sperber (2006)

Observed range in Niño3 
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→ Poster

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

IPCC AR4 (    ) large diversity !
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 El Niño in coupled GCMs - frequency

Classic metric:
maximum power of Niño3
SSTA spectra

AchutaRao & Sperber (2006)

IPCC TAR: to high frequency

IPCC AR4: improved towards
low freq. but still large diversity

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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 El Niño in coupled GCMs – seasonal phase lock

Classic metric:
Monthly Niño3 SSTA std. dev.

Subset of IPCC AR4 models

Very few models have the
spring relaxation and the
winter maximum

Observations
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 El Niño in coupled GCMs –  T vs. S modes

Kumar al. (2006)

• T-mode (thermocline, “slow”): subsurface,
west Pacific, amplitude ++, SSTA: W → E,
period ~5 years (> 1976)

• S-mode (SST, “rapid”): surface,
central/east Pacific, weaker amplitude, E →
W, 2-3 years (< 1976)

• Other modes (“mobile”)
• Observations: “hybrid” mode

SST EOF1 (corr. niño3 SSTA)

SST EOF2 (corr. TNI)

Period (years)  El Niño growth rateT-mode

S-mode
Fedorov and Philander (2001)
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TNI: Trans-niño index
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Defined by lag-correlation of TNI
 with Niño3 SSTA (Trenberth & Stepaniak 2001)

S/T- mode analysis in IPCC AR4 (Guilyardi 2006)

• Most models have an S-mode (related to too strong trade winds?)

• Few models exhibit hybrid El Niño modes, like observed

• [these exhibit significant El Niño change to larger amplitude
(+10/40 %) in warmer (2xCO2 and 4xCO2) climate]

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

 El Niño in coupled GCMs –  T vs. S modes

S-mode T-mode



9

 El Niño in coupled GCMs –  teleconnections

Tropical teleconnections with ENSO not well represented:
• ENSO much too dominant over local modes (WAM, Joly al. 2007)
• Links with monsoon/IODM (Gualdi al. 2003, Fisher al. 2005, Terray and Dominiak 2005)

• Links with tropical Atlantic
• Issue: which is influencing which ?

• More presentations and posters on this (J. Meehl, A. Turner,...)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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 El Niño in coupled GCMs – conclusions/issues

• Amplitude: models diversity much larger than (recent) observed
diversity

• Frequency: progress towards low frequency/wider spectra but still
errors

• SPL: very few models have the spring relaxation and the winter
variability maximum but amplitude of El Niño is related to SPL.

• Modes: very few model exhibits the diversity of observed ENSO modes;
most are locked into a S-mode (coherent with too strong trade winds)

• Evaluation = f(metrics): El Niño much more
complex than indices and correlation of indices
(proposals by Pacific panel & others)

• but most IPCC AR4 ENSO studies converge
on conclusions

• standard set of basic diagnostics required

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

SST anomaly in Niño3  

2/4 C

1/2 C

March 0 March +1Dec 0

Peak
Amplification

Precondition.

Termination

0
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 Origin of modelled El Niño errors

• Respective role of ocean and atmosphere models
• Role of mean state and annual cycle
• Use of simpler ENSO frameworks
• Physical mechanisms

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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HadAM3ECHAM 
T30

OPA/ORCA HadOM3

Same ocean

HOPE

Same 
atmosphere 

Same
atmosphere

ECHAM 
T42

ECHAM 
T106

HadOEM

Intercomparison         identify mechanisms/biases origin

Different resolutions
             SINTEX                             HadOPA  HadCM3    HadCEM 

The modular approach:

 Respective roles of ocean and atmosphere

Guilyardi al. (2004) 

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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• Too regular events
• Atmosphere GCM sets

dominant  frequency

Po
w

er

Years

ECHAM4
HadAM3

El Niño frequency :

Guilyardi al. (2004) 

Years

T30

• Atmosphere GCM resolution
improves El Niño low frequency
variability

T42
T106

 Respective roles of ocean and atmosphere

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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 Role of mean state errors in El Niño errors

Numerous studies addressed this issue (several posters):
• Trade winds strength (inverse relation with ENSO amplitude)
• Equatorial thermocline position (favouring one mode rather than another)
• ITCZ position and "double ITCZ" bias (favouring “summer” El Niños)

No clear general relation in IPCC AR4 models
• "Non-linearity" required for mean state to have an impact (i.e for scale

interactions)
• Guidance from simpler framework analysis
• El Niño errors can also lead to mean state errors (An & Jin 2004, Sun & Zhang 2006)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

Fedorov & Philander (2000)

El Niño changing or 
mean state evolving ?
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 Role of mean state errors in El Niño errors

Linear vs. non-linear ENSO regime (Hannachi al. 2001, Flugël al. 2004, An &
Jin 2004, Yeh & Kirtman 2007)

• "null hypothesis“: amplitude = f("noise"+ damping via coupled feedbacks) =
linear system
• in the non-linear regime, amplitude = f(mean state+damping)

Most GCMs are in the linear regime (skewness~0, van Oldenborgh al.
2005, Hannachi al. 2001 for CMIP2)

• Evidence that observed ENSO is in the non-
linear ("non-normal") regime (Hannachi al. 2001,
An & Jin 2004, Monahan & Dai 2004)

• Non-linear physics always acts to warm the
SST, hence the warm/cold asymmetry (An & Jin
2004)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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 Role of annual cycle errors in El Niño errors

• El Niño amplitude : inverse
relation with seasonal cycle
relative amplitude

• Agrees with theory and
observations

• Large SC: more difficult to
“disrupt” it into an El Niño
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Seasonal cycle relative strength (%)

• Less clear for models near
observations

10%5% 15%0% 20% 25% 30%

Guilyardi (2006) 

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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 Analysing GCMs via simpler frameworks

• Prescribe mean state from GCM to intermediate complexity model (ICM) of
the tropical Pacific

• Compare ENSO characteristics from both models (GCM and ICM)
• If they fit, explain GCM biases via ICM mechanisms
• Example in CNRM-CM3:

• Quasi-biennial GCM behaviour due to too shallow thermocline in
western-central Pacific (Dewitte al. 2007)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

ENSO theories:
• Self-sustained oscillator (linear framework)...
• ...or stable mode (or weakly damped) triggered by stochastic

atmospheric forcing (non-linear framework) ?
• relative role of West Pacific vs. East Pac. oscillator varies in models

(poster by Jin-Yi Yu)
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 Physical mechanisms

 Ocean response to τ anomalies
• Upwelling, mixing, ("thermocline

feedback", "cold tongue dynamics") (Meehl al.
2001, Burgers & van Oldenborgh 2003)

• Zonal advection (Picaut al. 1997)

• Wave dynamics (Kelvin and Rossby waves)
• Energy Dissipation (Fedorov 2006)

van Oldenborgh al. 2005

 Atmosphere response to SSTA
• Bjerknes wind stress feedback (van

Oldenborgh al. 2005, Guilyardi 2006)

• Meridional response of wind stress (An &
Wang 2000, Capotondi al. 2006, Merryfield 2006)

• Radiative and cloud feedbacks (Sun al.
2006, Bony al. 2006)

Non linear processes:
• NL dynamical heating (∇xT + U

in phase, An & Jin 2004)
• "Multiplicative noise" - MJO

(Lengaigne al. 2004)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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Coupling strength

El
 N

iñ
o 

fr
eq

ue
nc

y 
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• larger amplitude
• lower frequency

• No clear link with amplitude
• Link with frequency ?
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Radiative feedbacks

 Analysis of 9 AMIP forced AGCM
(IPCC AR4) (Sun al. 2006)

• Too weak negative net feedback
from atmosphere leads to
unrealistically high sensitivity to
small flux errors

• Main contributors: cloud albedo
and atmosphere transport
feedbacks

• Linked to a too strong water
vapour feedback (underestimation
of equatorial precipitation response)

Response of net surface heating to ENSO warming→ Poster

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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Ocean dissipation: "Energetics of El Niño"

→ PosterPotential and Kinetic Energy

Winds act on the surface
of the ocean, moving the
thermocline up and down
("wind work" W)

The "Potential energy" E
is stored in the slope of
the thermocline:
El Niño = min E
La Niña = max E

dE/dt = W + Dissipation

Based on Goddard and Philander (2000)

Wind Stress

Brown & Fedorov (2006)

The "decay scale" is the
lag between E and W

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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Ocean dissipation "decay scale"

Lag-correlate E and W

ORCA

α-1 = 2.3 years

OGCM forced by reanalysis winds (50y) HadCM3

SINTEX T30 MIROC HR

decay scale = 2.3 y decay scale = 1 y (very dissipative)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

2 year peak Weak ENSO amplitude

Brown & Fedorov (2006)
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 Specific models analysis

Ocean/atmosphere error compensation:
• HadAM3/HadOM3 amplitude El Niño = 1.0 C
• HadAM3/OPA        amplitude El Niño = 1.8 C !!!
• (but ECHAM4/OPA = 0.6)
• Previous analysis has shown that HadAM3 over-reactivity to SSTA
is balanced by HadOM3 much too strong dissipation

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

• GFDL: poster by Andrew Wittenberg et al.
• suite of automated diagnostics + HCM

• CCSM3: talk+posters by Ed Schneider, Guang Zhang et al.
• work on physical parameterisations, addressing tropical biases

• HadCM3: posters by Mat Collins, Thomas Tonazzio et al.
• perturbed physics ensemble (QUMP)
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 Response to climate change
• Model errors/differences much larger than scenario differences
• Dependence of ENSO on mean state = f(non linearity) (Yeh & Kirtman 2006)

Meridional width of τx pattern

ENSO amplitude
change (pre-ind. to
2xCO2)

• Function of meridional response of wind stress (Capotondi al. 2006, Merryfield
2006)

These models have
unrealistically low
ENSO amplitudes

Merryfield (2006)

S → T mode evolution
(Guilyardi 2006)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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 Conclusions
El Niño errors in coupled GCMs:

• too large diversity of amplitude (dominate over response to CO2 increase)
• too frequent, single-peaked, SST-type El Niño events
• linear regime
• CMIP3 (IPCC AR4) models show clear improvement over CMP2 models

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

Analysis suggest:
• atmosphere GCM has a dominant role (strongest biases ?)
• ocean GCM modulates amplitude (but via strong bias)
• mean and annual cycle of wind stress too strong (S- mode)
• no clear relation between mean state and ENSO amplitude (linear

regime)
• amplitude easier than frequency to relate to model errors

Number of new and promising approaches (thanks to IPCC AR4 and PCMDI!)
community is ready to go further and integrate them
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 Model development to improve ENSO

Strategy:
• Tune each component in forced mode
• Couple and hope for the best !
• Tuning of ENSO itself highly risky (metric ? + error compensation)
• Evaluate ENSO with standard set of diagnostics and in multi-model to

help identify weak links (i.e. “ENSOMIPs”)
• Identify biases and likely origin
• Improvement of key mechanisms then follows
• Issue of flux-corrections (in non-linear regime)

Atmosphere GCM resolution required (minimum ~1deg)
• to "see" ocean GCM structures (upwelling, TIW, WBC,...)
• to alleviate convection on/off behaviour

Atmosphere dynamical/radiative feedbacks
• still not fully understood (but key)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007
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 Strategies forward

Organised metrics towards “standard ENSO assessment”:
• Basic diagnostics: wide agreement, led by PCMDI → AR5
• Then "theory-dependent" analysis by sub-groups
• Simpler models framework promising

Dedicated multi-model sensitivity studies to assess
robustness of mechanisms (EU DYNAMITE)

Evaluation requires additionnal observations (further off-
equator, ARGO, quality surface fluxes,...)

El Niño in coupled GCMs – Eric Guilyardi – WGNE/PCMDI, San Francisco – Feb 2007

• ENSO breakout session Wednesday pm
• Ad-hoc ENSO group meeting Friday pm
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 Proposal for ENSO basic/essential metrics

From joint NCAS/IPSL/Hadley Centre effort
• maps + sections mean state and annual cycle variables (SST, τ, U, T,...)
• annual cycle (nino4 τx vs. nino3 SSTA) longitude/time at equator and

10S/10N lat/time diagrams in W/C/E Pacific (SST, τ, precip,...)
• standard deviation & skewness maps of SST and τx
• SSTA nino3 & SO time serie stats + mean value + annual cycle (SPL)
• coupling strength diagnostic
• normalised spectra, autocorrelations of nino3 SSTA
• validation data: TAO profiles +... and same physics forced runs (CORE

set-up)
• other analysis fonction of biases from these “essentials”
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Impact of WWB on El Niño triggering in a CGCM

Lengaigne al. (2004)

WWE

Obs. El Niño
1997/98

SSTA

TauxA

HadOPA
Ensemble 
with WWE

Nino 3 SSTA 10 members
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El Niño = variations around a mean state and
a seasonal cycle

Fedorov & Philander, Science (2000)

Pezzulli et al, J Clim (2005)

El Niño changing or 
mean state evolving ?

Constant 
seasonal cycle 

Varying 
seasonal cycle Seasonal cycle

2001

Longitude

1997

Varying seasonal cycle:

Varying seasonal cycle
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• Diversity !
• Average of scenario:
   no tendency

2 C

1.5 C

1 C

0.5 C

Obs: 0.8 C

CNRM IPSL

CTL CO2x2 CO2x4

Amplitude
El Niño in IPCC AR4

Can we refine the diagnostic metrics ?

MPI HadCM3
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Indian ocean links

• MJO generated from the Indian ocean
• “Tripolar” variability:
 Indian ocean / indonesian warm pool / Pacific ocean

Terray & Dominiak, J Clim (2005)

1976 “Climatic shift”:
Indian dipole (IOD)   Convection    El Niño
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• 2 groups
• El Niño amplitude : inverse

relationship with trade winds
intensity

• Agrees with observation and
theory (1976 shift)

•Relation holds in scenarios
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El Niño in IPCC AR4

MPI

HadCM3
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ε[spectral ≤ 1 year]

ε[spectral total]

• Observations  = 9 %
• Models: from 0% à 55% !

• Scenario: little change but:
• GFDL-CM2.1, PCM (+)
• MRI-CGM2.3.2 (-)

Seasonal cycle
relative strength

Anomaly
With seasonal

cycle

SST Niño 3 spectra

 Definition =

El Niño in IPCC AR4
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• S-mode: weak ampl., E → W,
surface, 2-3 years (< 1976)

• T-mode: ampl. ++, W → E,
subsurface, ~5 years (>1976)

• Define by lag-correlation of TNI*
with Niño3 SSTA

• Classification can be applied to
GCMs !

*Trans-Niño Index = measures
East/West SST gradient

CNRM: strong S-mode
IPSL: weak S-mode (~ hybrid)
MPI, HadCM3: hybrid mode

El Niño modes
[Refined metrics]
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• Large amplitude changes are
associated with a mode
changes towards a T-mode

• Like observed
   (pre/post 1976)

•Likelyhood of increased El Niño
amplitude in the futur ?

• (caveat: 2xCO2 and 4xCO2)
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El Niño in IPCC AR4
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Atmosphere physics and ocean-atmosphere
coupling

IPSL/Tiedke
(0.36) – old scheme

IPSL/K-Emmanuel
(1.0 C) - in IPCC

Example: change of atmosphere convection scheme in IPSL-CM4
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“Geometric” coupling and ocean-atmosphere
interpolation

SSTA std dev
Atmosphere grid

T106 (1o) 

T30 (3.8o) 

OPA ocean grid  (0.5o)

T30 atm
T30 oce

T106 oce+atm
4o N

4o S

Equatorial
Wave guide

Zonal mean SST std dev
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Test: modify the interpolation

• SINTEX T106 mod = T106 with interpolation via T30

8.5 6.6 7.0 Coupling 
strength

Interpolation important but other atmosphere processes as
well

El Niño amplitude 0.61 0.74 0.67 
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Next step: modularity within a component

Why does HadAM3/OPA produces such large El Niño events ?

HadAM3

1) ocean physics
2) atmosphere physics (HadAM3 too reactive to SST or δx(SST) ?)

HadOM3+ =     1.0 oC

HadAM3 OPA+ =     1.8 oC

HadAM3 OPA+HadOM 3 
Vert. Physics+ =     1.4 oC

=     1.7 oCHadAM3+
CAPE + OPA

HadAM3 HadEOM+ =     1.2 oC


